Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 155, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321098

RESUMO

In many taxa, females store sperm in specialized storage organs. Most insect sperm storage organs have a tubular structure, typically consisting of a central lumen surrounded by epithelial cells. These specialized tubules perform the essential tasks of transporting sperm through the female reproductive tract and supporting long-term sperm survival and function. Little is known about the way in which female sperm storage organs provide an environment conducive to sperm survival. We address this using a combined light microscopy, micro computed tomography (microCT), and Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) approach for high-resolution correlative three-dimensional imaging to advance our understanding of sperm-female interactions in Drosophila melanogaster. Using this multimodal approach, we were able to scan the lower female reproductive tract and distal portion of the seminal receptacle at low magnification, and to subsequently zoom in for further analysis on an ultrastructural level. Our findings highlight aspects of the way in which the seminal receptacle keeps sperm viable in the lumen, and set the stage for further studies. The methods developed are suitable not only for Drosophila but also for other organisms with soft, delicate tissues.


Assuntos
Drosophila melanogaster , Genitália Feminina , Animais , Feminino , Masculino , Drosophila melanogaster/fisiologia , Microscopia , Sêmen , Espermatozoides , Microtomografia por Raio-X , Genitália Feminina/fisiologia
2.
Adv Mater ; 36(8): e2306996, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38031346

RESUMO

Numerous bio-organisms employ template-assisted crystallization of molecular solids to yield crystal morphologies with unique optical properties that are difficult to reproduce synthetically. Here, a facile procedure is presented to deposit bio-inspired birefringent crystals of xanthine derivatives on a template of single-crystal quartz. Crystalline sheets that are several millimeters in length, several hundred micrometers in width, and 300-600 nm thick, are obtained. The crystal sheets are characterized with a well-defined orientation both in and out of the substrate plane, giving rise to high optical anisotropy in the plane parallel to the quartz surface, with a refractive index difference Δn ≈ 0.25 and a refractive index along the slow axis of n ≈ 1.7. It is further shown that patterning of the crystalline stripes with a tailored periodic grating leads to a thin organic polarization-dependent diffractive meta-surface, opening the door to the fabrication of various optical devices from a platform of small-molecule based organic dielectric crystals.

3.
J Struct Biol ; 215(3): 107998, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37422275

RESUMO

We report on the 3D ultrastructure of the mineralized petrous bone of mature pig using focused ion beam - scanning electron microscopy (FIB-SEM). We divide the petrous bone into two zones based on the degree of mineralization; one zone close to the otic chamber has higher mineral density than the second zone further away from the otic chamber. The hypermineralization of the petrous bone results in the collagen D-banding being poorly revealed in the lower mineral density zone (LMD), and absent in the high mineral density zone (HMD). We therefore could not use D-banding to decipher the 3D structure of the collagen assembly. Instead we exploited the anisotropy option in the Dragonfly image processing software to visualize the less mineralized collagen fibrils and/or nanopores that surround the more mineralized zones known as tesselles. This approach therefore indirectly tracks the orientations of the collagen fibrils in the matrix itself. We show that the HMD bone has a structure similar to that of woven bone, and the LMD is composed of lamellar bone with a plywood-like structural motif. This agrees with the fact that the bone close to the otic chamber is fetal bone and is not remodeled. The lamellar structure of the bone further away from the otic chamber is consistent with modeling/remodeling. The absence of the less mineralized collagen fibrils and nanopores resulting from the confluence of the mineral tesselles may contribute to shielding DNA during diagenesis. We show that anisotropy evaluation of the less mineralized collagen fibrils could be a useful tool to analyze bone ultrastructures and in particular the directionality of collagen fibril bundles that make up the bone matrix.


Assuntos
DNA Antigo , Odonatos , Animais , Suínos , Osso Petroso , Colágeno , Minerais
4.
Bone ; 174: 116818, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37295663

RESUMO

The hallmark of enthesis architecture is the 3D compositional and structural gradient encompassing four tissue zones - tendon/ligament, uncalcified fibrocartilage, calcified fibrocartilage and bone. This functional gradient accommodates the large stiffness differential between calcified bone and uncalcified tendon/ligament. Here we analyze in 3D the organization of the mouse Achilles enthesis and mineralizing Achilles tendon in comparison to lamellar bone. We use correlative, multiscale high-resolution volume imaging methods including µCT with submicrometer resolution and FIB-SEM tomography (both with deep learning-based image segmentation), and TEM and SEM imaging, to describe ultrastructural features of physiologic, age-related and aberrant mineral patterning. We applied these approaches to murine wildtype (WT) Achilles enthesis tissues to describe in normal calcifying fibrocartilage a crossfibrillar mineral tessellation pattern similar to that observed in lamellar bone, but with greater variance in mineral tesselle morphology and size. We also examined Achilles enthesis structure in Hyp mice, a murine model for the inherited osteomalacic disease X-linked hypophosphatemia (XLH) with calcifying enthesopathy. In Achilles enthesis fibrocartilage of Hyp mice, we show defective crossfibrillar mineral tessellation similar to that which occurs in Hyp lamellar bone. At the cellular level in fibrocartilage, unlike in bone where enlarged osteocyte mineral lacunae are found as peri-osteocytic lesions, mineral lacunar volumes for fibrochondrocytes did not differ between WT and Hyp mice. While both WT and Hyp aged mice demonstrate Achilles tendon midsubstance ectopic mineralization, a consistently defective mineralization pattern was observed in Hyp mice. Strong immunostaining for osteopontin was observed at all mineralization sites examined in both WT and Hyp mice. Taken together, this new 3D ultrastructural information describes details of common mineralization trajectories for enthesis, tendon and bone, which in Hyp/XLH are defective.


Assuntos
Tendão do Calcâneo , Calcinose , Entesopatia , Raquitismo Hipofosfatêmico Familiar , Camundongos , Animais , Raquitismo Hipofosfatêmico Familiar/patologia , Tendão do Calcâneo/diagnóstico por imagem , Tendão do Calcâneo/patologia , Entesopatia/diagnóstico por imagem , Entesopatia/patologia , Calcinose/patologia , Fibrocartilagem/patologia , Minerais
5.
ACS Appl Mater Interfaces ; 15(19): 23908-23921, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37133217

RESUMO

Two-dimensional (2D) halide perovskites, HaPs, can provide chemical stability to three-dimensional (3D) HaP surfaces, protecting them from exposure to ambient species and from reacting with contacting layers. Both actions occur with 2D HaPs, with the general stoichiometry R2PbI4 (R: long or bulky organic amine) covering the 3D ones. Adding such covering films can also boost power conversion efficiencies of photovoltaic cells by passivating surface/interface trap states. For maximum benefit, we need conformal ultrathin and phase-pure (n = 1) 2D layers to enable efficient tunneling of photogenerated charge carriers through the 2D film barrier. Conformal coverage of ultrathin (<10 nm) R2PbI4 layers on 3D perovskites is challenging with spin coating; even more so is its upscaling for larger-area devices. We report on vapor-phase cation exchange of the 3D surface with the R2PbI4 molecules and real-time in situ growth monitoring by photoluminescence (PL) to determine limits for forming ultrathin 2D layers. We characterize the 2D growth stages, following the changing PL intensity-time profiles, by combining structural, optical, morphological, and compositional characterizations. Moreover, from quantitative X-ray photoelectron spectroscopy (XPS) analysis on 2D/3D bilayer films, we estimate the smallest width of a 2D cover that we can grow to be <5 nm, roughly the limit for efficient tunneling through a (semi)conjugated organic barrier. We also find that, besides protecting the 3D against ambient humidity-induced degradation, the ultrathin 2D-on-3D film also aids self-repair following photodamage.

6.
Nat Commun ; 14(1): 480, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717559

RESUMO

Diatoms are unicellular algae characterized by silica cell walls. These silica elements are known to be formed intracellularly in membrane-bound silica deposition vesicles and exocytosed after completion. How diatoms maintain membrane homeostasis during the exocytosis of these large and rigid silica elements remains unknown. Here we study the membrane dynamics during cell wall formation and exocytosis in two model diatom species, using live-cell confocal microscopy, transmission electron microscopy and cryo-electron tomography. Our results show that during its formation, the mineral phase is in tight association with the silica deposition vesicle membranes, which form a precise mold of the delicate geometrical patterns. We find that during exocytosis, the distal silica deposition vesicle membrane and the plasma membrane gradually detach from the mineral and disintegrate in the extracellular space, without any noticeable endocytic retrieval or extracellular repurposing. We demonstrate that within the cell, the proximal silica deposition vesicle membrane becomes the new barrier between the cell and its environment, and assumes the role of a new plasma membrane. These results provide direct structural observations of diatom silica exocytosis, and point to an extraordinary mechanism in which membrane homeostasis is maintained by discarding, rather than recycling, significant membrane patches.


Assuntos
Diatomáceas , Diatomáceas/metabolismo , Parede Celular/metabolismo , Organelas/metabolismo , Dióxido de Silício/química , Exocitose
7.
Acta Biomater ; 155: 482-490, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375785

RESUMO

During spicule formation in sea urchin larvae, calcium ions translocate within the primary mesenchymal cells (PMCs) from endocytosed seawater vacuoles to various organelles and vesicles where they accumulate, and subsequently precipitate. During this process, calcium ions are concentrated by more than three orders of magnitude, while other abundant ions (Na, Mg) must be removed. To obtain information about the overall ion composition in the vesicles, we used quantitative cryo-SEM-EDS and cryo-STEM-EDS analyzes. For cryo-STEM-EDS, thin (500 nm) frozen hydrated lamellae of PMCs were fabricated using cryo-focused ion beam-SEM. The lamellae were then loaded into a cryo-TEM, imaged and the ion composition of electron dense bodies was measured. Analyzes performed on 18 Ca-rich particles/particle clusters from 6 cells contained Ca, Na, Mg, S and P in different ratios. Surprisingly, all the Ca-rich particles contained P in amounts up to almost 1:1 of Ca. These cryo-STEM-EDS results were qualitatively confirmed by cryo-SEM-EDS analyzes of 310 vesicles, performed on high pressure frozen and cryo-planed samples. We discuss the advantages and limitations of the two techniques, and their potential applicability, especially to study ion transport pathways and ion trafficking in cells involved in mineralization. STATEMENT OF SIGNIFICANCE: The 'inorganic side of life', encompassing ion trafficking and ion storage in soft tissues of organisms, is a generally overlooked problem. Addressing such a problem becomes possible through the application of innovative techniques, performed in cryogenic conditions, which preserve the tissues in quasi-physiological state. We developed here a set of analytical tools, cryo-SEM-EDS, and cryo-STEM-EDS, which allow reconstructing the ion composition inside vesicles in sea urchin larval cells, on their way to deposit mineral in the skeletons. The techniques are complex, and we evaluate here the advantages and disadvantages of each technique. The methodologies that we are developing here can be applied to other cells and other pathways as well, eventually leading to quantitative elemental analyzes of tissues under cryogenic conditions.


Assuntos
Cálcio , Ouriços-do-Mar , Animais , Cálcio/metabolismo , Microscopia Crioeletrônica/métodos , Larva , Microscopia Eletrônica de Transmissão e Varredura , Vacúolos/metabolismo , Íons
8.
J Am Chem Soc ; 144(49): 22440-22445, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36469805

RESUMO

Controlling the morphology of crystalline materials is challenging, as crystals have a strong tendency toward thermodynamically stable structures. Yet, organisms form crystals with distinct morphologies, such as the plate-like guanine crystals produced by many terrestrial and aquatic species for light manipulation. Regulation of crystal morphogenesis was hypothesized to entail physical growth restriction by the surrounding membrane, combined with fine-tuned interactions between organic molecules and the growing crystal. Using cryo-electron tomography of developing zebrafish larvae, we found that guanine crystals form via templated nucleation of thin leaflets on preassembled scaffolds made of 20-nm-thick amyloid fibers. These leaflets then merge and coalesce into a single plate-like crystal. Our findings shed light on the biological regulation of crystal morphogenesis, which determines their optical properties.


Assuntos
Guanina , Peixe-Zebra , Animais
9.
Faraday Discuss ; 240(0): 127-141, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-35938388

RESUMO

Malaria is a potentially fatal infectious disease caused by the obligate intracellular parasite Plasmodium falciparum. The parasite infects human red blood cells (RBC) and derives nutrition by catabolism of hemoglobin. As amino acids are assimilated from the protein component, the toxic heme is released. Molecular heme is detoxified by rapid sequestration to physiologically insoluble hemozoin crystals within the parasite's digestive vacuole (DV). Common antimalarial drugs interfere with this crystallization process, leaving the parasites vulnerable to the by-product of their own metabolism. A fundamental debate with important implications on drug mechanism regards the chemical environment of crystallization in situ, whether aqueous or lipid. This issue had been addressed previously by cryogenic soft X-ray tomography. We employ cryo-scanning transmission electron tomography (CSTET) to probe parasite cells throughout the life cycle in a fully hydrated, vitrified state at higher resolution. During the acquisition of CSTET data, Bragg diffraction from the hemozoin provides a uniquely clear view of the crystal boundary at nanometer resolution. No intermediate medium, such as a lipid coating or shroud, could be detected surrounding the crystals. The present study describes a unique application of CSTET in the study of malaria. The findings can be extended to evaluate new drug candidates affecting hemozoin crystal growth.


Assuntos
Tomografia com Microscopia Eletrônica , Malária , Humanos , Heme/química , Heme/metabolismo , Malária/parasitologia , Lipídeos/química
10.
Proc Natl Acad Sci U S A ; 119(34): e2205475119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35939716

RESUMO

We employed in a correlative manner an unconventional combination of methods, comprising cathodoluminescence, cryo-scanning electron microscopy (SEM), and cryo-focused ion beam (FIB)-SEM, to examine the volumes of thousands of cubed micrometers from rabbit atherosclerotic tissues, maintained in close-to-native conditions, with a resolution of tens of nanometers. Data from three different intralesional regions, at the media-lesion interface, in the core, and toward the lumen, were analyzed following segmentation and volume or surface representation. The media-lesion interface region is rich in cells and lipid droplets, whereas the core region is markedly richer in crystals and has lower cell density. In the three regions, thin crystals appear to be associated with intracellular or extracellular lipid droplets and multilamellar bodies. Large crystals are independently positioned in the tissue, not associated with specific cellular components. This extensive evidence strongly supports the idea that the lipid droplet surfaces and the outer membranes of multilamellar bodies play a role in cholesterol crystal nucleation and growth and that crystal formation occurs, in part, inside cells. The correlative combination of methods that allowed the direct examination of cholesterol crystals and lipid deposits in the atherosclerotic lesions may be similarly used for high-resolution examination of other tissues containing pathological or physiological cholesterol deposits.


Assuntos
Aterosclerose , Colesterol , Microscopia Crioeletrônica , Imageamento Tridimensional , Microscopia Eletrônica de Varredura , Animais , Aterosclerose/diagnóstico por imagem , Colesterol/química , Microscopia Crioeletrônica/métodos , Imageamento Tridimensional/métodos , Microscopia Eletrônica de Varredura/métodos , Nanotecnologia , Coelhos
11.
Proc Natl Acad Sci U S A ; 119(10): e2114740119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35239436

RESUMO

SignificanceSurface engineering of halide perovskites (HaPs), semiconductors with amazing optoelectronic properties, is critical to improve the performance and ambient stability of HaP-based solar cells and light emitting diodes (LEDs). Ultrathin layers of two-dimensional (2D) analogs of the three-dimensional (3D) HaPs are particularly attractive for this because of their chemical similarities but higher ambient stability. But do such 2D/3D interfaces actually last, given that ions in HaPs move readily-i.e., what happens at those interfaces on the atomic scale? A special electron microscopy, which as a bonus also reveals the true conditions for nondestructive analysis, shows that the large ions that are a necessary part of the 2D films can move into the 3D HaP, a fascinating illustration of panta rei in HaPs.

12.
STAR Protoc ; 3(1): 101142, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35199027

RESUMO

We recently demonstrated how lipid droplets can serve as in situ fiducials for correlating cryo-fluorescence microscopy (cryo-FM) and cryo-focused ion beam scanning electron microscopy (cryo-FIB-SEM) datasets of mammalian cells grown on grids. Here we describe a step-by-step protocol for correlative cryo-FM and cryo-FIB-SEM, starting from sample preparation of C2C12 cell line, followed by imaging with cryo-FM and cryo-FIB-SEM. Finally, we detail how to perform the 3D-correlation with sub-micron accuracy. For complete details on the use and execution of this profile, please refer to Scher et al. (2021).


Assuntos
Tomografia com Microscopia Eletrônica , Manejo de Espécimes , Animais , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Congelamento , Mamíferos , Microscopia de Fluorescência
13.
J Struct Biol ; 214(1): 107834, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35077832

RESUMO

Biogenic purine crystals function in vision as mirrors, multilayer reflectors and light scatterers. We investigated a light sensory organ in a primarily wingless insect, the jumping bristletail Lepismachilis rozsypali (Archaeognatha), an ancestral group. The visual system of this animal comprises two compound eyes, two lateral ocelli, and a median ocellus, which is located on the front of the head, pointing downwards to the ground surface. We determined that the median ocellus contains crystals of xanthine, and we obtained insights into their function. To date, xanthine biocrystals have only been found in the Archaeognatha. We performed a structural analysis, using reflection light microscopy, cryo-FIB-SEM, microCT and cryo-SEM. The xanthine crystals cover the bottom of a bowl-shaped volume in the median ocellus, in analogy to a tapetum, and reflect photons to light-sensitive receptors that are spread in the volume without apparent order or preferential orientation. We infer that the median ocellus operates as an irregular multifocal reflector, which is not capable of forming images. A possible function of this organ is to improve photon capture, and by so doing assess distances from the ground surface when jumping by determining changes in the intensity and contrast of the incident light.


Assuntos
Insetos , Animais , Morfogênese , Xantina
14.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34446565

RESUMO

Asymmetric two-dimensional (2D) structures (often named Janus), like SeMoS and their nanotubes, have tremendous scope in material chemistry, nanophotonics, and nanoelectronics due to a lack of inversion symmetry and time-reversal symmetry. The synthesis of these structures is fundamentally difficult owing to the entropy-driven randomized distribution of chalcogens. Indeed, no Janus nanotubes were experimentally prepared, so far. Serendipitously, a family of asymmetric misfit layer superstructures (tubes and flakes), including LaX-TaX2 (where X = S/Se), were synthesized by high-temperature chemical vapor transport reaction in which the Se binds exclusively to the Ta atoms and La binds to S atoms rather than the anticipated random distribution. With increasing Se concentration, the LaS-TaX2 misfit structure gradually transformed into a new LaS-TaSe2-TaSe2 superstructure. No misfit structures were found for xSe = 1. These counterintuitive results shed light on the chemical selectivity and stability of misfit compounds and 2D alloys, in general. The lack of inversion symmetry in these asymmetric compounds induces very large local electrical dipoles. The loss of inversion and time-reversal symmetries in the chiral nanotubes offers intriguing physical observations and applications.

15.
J Struct Biol ; 213(4): 107781, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34411695

RESUMO

The interphase region at the base of the growth plate includes blood vessels, cells and mineralized tissues. In this region, cartilage is mineralized and replaced with bone. Blood vessel extremities permeate this space providing nutrients, oxygen and signaling factors. All these different components form a complex intertwined 3D structure. Here we use cryo-FIB SEM to elaborate this 3D structure without removing the water. As it is challenging to image mineralized and unmineralized tissues in a hydrated state, we provide technical details of the parameters used. We obtained two FIB SEM image stacks that show that the blood vessels are in intimate contact not only with cells, but in some locations also with mineralized tissues. There are abundant red blood cells at the extremities of the vessels. We also documented large multinucleated cells in contact with mineralized cartilage and possibly also with bone. We observed membrane bound mineralized particles in these cells, as well as in blood serum, but not in the hypertrophic chondrocytes. We confirm that there is an open pathway from the blood vessel extremities to the mineralizing cartilage. Based on the sparsity of the mineralized particles, we conclude that mainly ions in solution are used for mineralizing cartilage and bone, but these are augmented by the supply of mineralized particles.


Assuntos
Cartilagem/ultraestrutura , Microscopia Crioeletrônica/métodos , Lâmina de Crescimento/ultraestrutura , Imageamento Tridimensional/métodos , Microscopia Eletrônica de Varredura/métodos , Tíbia/ultraestrutura , Animais , Membrana Basal/ultraestrutura , Vasos Sanguíneos/citologia , Vasos Sanguíneos/ultraestrutura , Desenvolvimento Ósseo , Calcificação Fisiológica , Cartilagem/citologia , Cartilagem/crescimento & desenvolvimento , Diferenciação Celular , Condrócitos/citologia , Condrócitos/metabolismo , Condrócitos/ultraestrutura , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Feminino , Lâmina de Crescimento/citologia , Lâmina de Crescimento/crescimento & desenvolvimento , Camundongos Endogâmicos BALB C , Morfogênese , Tíbia/citologia , Tíbia/crescimento & desenvolvimento
16.
iScience ; 24(7): 102714, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34258551

RESUMO

Imaging of cells and tissues has improved significantly over the last decade. Dual-beam instruments with a focused ion beam mounted on a scanning electron microscope (FIB-SEM), offering high-resolution 3D imaging of large volumes and fields-of-view are becoming widely used in the life sciences. FIB-SEM has most recently been implemented on fully hydrated, cryo-immobilized, biological samples. Correlative light and electron microscopy workflows combining fluorescence microscopy (FM) with FIB-SEM imaging exist, whereas workflows combining cryo-FM and cryo-FIB-SEM imaging are not yet commonly available. Here, we demonstrate that fluorescently labeled lipid droplets can serve as in situ fiducial markers for correlating cryo-FM and FIB-SEM datasets and that this approach can be used to target the acquisition of large FIB-SEM stacks spanning tens of microns under cryogenic conditions. We also show that cryo-FIB-SEM imaging is particularly informative for questions related to organelle structure and inter-organellar contacts, nuclear organization, and mineral deposits in cells.

17.
Acta Biomater ; 121: 497-513, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33217569

RESUMO

The mineralized collagen fibril is the basic building block of bone, and hence is the key to understanding bone structure and function. Here we report imaging of mineralized pig bone samples in 3D using the focused ion beam-scanning electron microscope (FIB-SEM) under conditions that reveal the 67 nm D-banding of mineralized collagen fibrils. We show that in adult pig osteons, the lamellar bone comprises alternating layers with either collagen fibrils predominantly aligned in one direction, and layers in which fibrils are predominantly aligned in two directions. The cement sheath contains thin layers of both these motifs, but its dominant structural component comprises a very complex layer of fibrils predominantly aligned in three or more directions. The degree of mineralization of the cement sheath is comparable to that of the osteon interior. The extent of alignment (dispersion) of the collagen fibrils in the osteonal lamellar bone is significantly higher than in the cement sheath. Canaliculi within the cement sheath are mainly aligned parallel to the cement sheath boundary, whereas in the lamellar bone they are mainly aligned perpendicular to the lamellar boundaries. This study further characterizes the presence of two types of collagen fibril arrangements previously identified in demineralized lamellar bone from other species. The simple sample preparation procedure for mineralized bone and the lower risk of introducing artifacts opens the possibility of using FIB-SEM to study more samples, to obtain automatic quantitative information on collagen fibril organization and to evaluate the degrees of mineralization all in relatively large volumes of bone.


Assuntos
Osso e Ossos , Ósteon , Animais , Suínos
18.
Sci Adv ; 6(42)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33067244

RESUMO

Diatoms are an abundant group of microalgae, known for their ability to form an intricate cell wall made of silica. Silicon levels in seawater are in the micromolar range, making it a challenge for diatoms to supply the rapid intracellular silicification process with the needed flux of soluble silicon. Here, we use three-dimensional cryo-electron microscopy and spectroscopy to quantitatively analyze, at submicrometer spatial resolution and sensitivity in the millimolar range, intracellular silicon in diatom cells. Our results show that the internal silicon concentration inside the cell is ~150 mM in average, three orders of magnitude higher than the external environment. The cellular silicon content is not compartmentalized, but rather unevenly distributed throughout the cell. Unexpectedly, under silicon starvation, the internal silicon pool is not depleted, reminiscent of a constitutive metabolite. Our spatially resolved approach to analyze intracellular silicon opens avenues to investigate this homeostatic trait of diatoms.

19.
J Struct Biol ; 211(2): 107530, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32407760

RESUMO

We examine the structure of the bone of the pharyngeal jaws of a large fish, the black drum (Pogonias cromis), that uses its tooth-jaw complex to crush hard-shelled bivalve mollusks. During mastication huge compressive forces are concentrated in a tiny zone at the tooth-bone interface. We report on the structure of this bone, with emphasis on its contact with the teeth, at different hierarchical levels and in 3D. Micro-CT shows that the molariform teeth do not have roots and are supported by a circular narrow bony rim that surrounds the periphery of the tooth base. The lower pharyngeal jaw is highly porous, as seen by reflected light microscopy and secondary electron microscopy (SE-SEM). Porosity decreases close to the bone-tooth interface and back-scattered electron (BSE-SEM) microscopy shows a slight elevation in mineral density. Focused ion beam - scanning electron microscopy (FIB-SEM) in the serial surface view (SSV) mode reveals a most surprising organization at the nanoscale level: parallel arrays of mineralized collagen fibrils surrounding channels of ~100 nm diameter, both with their long axes oriented along the load direction. The channels are filled with organic matter. These fibril-channel arrays are surrounded by a highly disordered mineralized material. This unusual structure clearly functions efficiently under compression, but the precise way by which this unique arrangement achieves this function is unknown.


Assuntos
Peixes/fisiologia , Arcada Osseodentária/ultraestrutura , Mandíbula/ultraestrutura , Animais , Arcada Osseodentária/fisiologia , Mandíbula/fisiologia , Fenômenos Mecânicos , Dente/fisiologia , Dente/ultraestrutura
20.
Nano Lett ; 20(2): 953-962, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31869233

RESUMO

While various electronic components based on carbon nanotubes (CNTs) have already been demonstrated, the realization of miniature electromagnetic coils based on CNTs remains a challenge. Coils made of single-wall CNTs with accessible ends for contacting have been recently demonstrated but were found unsuitable to act as electromagnetic coils because of electrical shorting between their turns. Coils made of a few-wall CNT could in principle allow an insulated flow of current and thus be potential candidates for realizing CNT-based electromagnetic coils. However, no such CNT structure has been produced so far. Here, we demonstrate the formation of few-wall CNT coils and characterize their structural, optical, vibrational, and electrical properties using experimental and computational tools. The coils are made of CNTs with 2, 3, or 4 walls. They have accessible ends for electrical contacts and low defect densities. The coil diameters are on the order of one micron, like those of single-wall CNT coils, despite the higher rigidity of few-wall CNTs. Coils with as many as 163 turns were found, with their turns organized in a rippled raft configuration. These coils are promising candidates for a variety of miniature devices based on electromagnetic coils, such as electromagnets, inductors, transformers, and motors. Being chirally and enantiomerically pure few-wall CNT bundles, they are also ideal for fundamental studies of interwall coupling and superconductivity in CNTs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...